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very long lifetime. In this paper, we investigate the possibility to study the decay of

such a long lived scalar tau at the LHC. If we can add to the present LHC experiments

additional detectors which are able to stop the stau particles and measure the produced

decay products, the decay characteristics can be studied precisely at the LHC. We identify

a maximum ”stopper detector” that could be added in the CMS cavern, and estimate the

sensitivity to the lifetime of the stau and to the mass of gravitino with this detector. The

decay of the scalar tau may be significantly modified if the decay channel to the axino ã is

open. We study the possibility to distinguish such decays from decays into gravitinos by

measuring the process τ̃ → ã(G̃)τγ using the stopper detector.
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1. Introduction

The minimal supersymmetric standard model (MSSM) is one of the most important candi-

dates for the physics beyond the Standard Model. The strongly interacting superpartners,

gluinos and squarks with mass lighter than 2.5 TeV can be discovered at the Large Hadron

Collider at CERN (LHC) [1]. The physics run of LHC will start in 2008.

Among the supersymmetric (SUSY) particles, the lightest SUSY particle (LSP) plays

a key role. In cosmology, it is a candidate for the cold dark matter in the universe. At the

LHC, the signals of the supersymmetric particles depends on the nature of the LSP. It may

be the lightest neutralino χ̃0
1, which escapes from detection and leads to missing ET in the

event. Another possibility for the LSP is the gravitino G̃, the superpartner of the graviton.

The gravitino coupling to other particles in the MSSM sector is extremely small, namely

proportional to 1/Mpl. The next lightest SUSY particle (NLSP), whose decay products

necessarily include the gravitino, is therefore long-lived.

We discuss the scenario where the LSP is the gravitino and the long-lived NLSP carries

charge. A natural candidate for a charged NLSP (CNLSP) is the lightest scalar tau, τ̃1,
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which can be significantly lighter than the other sleptons due to the left-right mixing

induced by the off diagonal matrix element m2
LR ∼ mτµ tan β. The charged particle leaves

tracks in the central detectors (ATLAS and CMS), giving additional information for the

SUSY particle reconstructions. If the NLSP decays in the main detectors, a displaced

vertex may be observed as well.

The expected lifetime of the CNLSP τ̃ is unconstrained, because it is proportional

to (mG̃)2 the yet unknown gravitino mass squared. On the other hand, the gravitino

mass is proportional to the total SUSY breaking scale in the hidden sector, therefore the

determination of the lifetime is an important physics goal. The lifetime measurement gives

direct information on the hidden sector.

A particle decays efficiently in the main detectors (CMS and ATLAS) if the decay

length is sufficiently short, cτ ¿ (10m)×Nproduced, where Nproduced is the number of pro-

duced SUSY particles. On the other hand, for typical SUSY production cross sections, a

direct observation of the decay is very difficult for τCNLSP > 0.01 sec. However, it has been

pointed out that the CNLSP stopped by the ionization loss in the material may be studied

in detail [2, 3]. An idea for a stopper based on a water tank is presented in ref. [3], where

the water can be transported away from the detector site, for concentration and further

study. In ref. [2], a detector consisting of a tracker and heavy stopping material is proposed,

which can measure the arrival time and the location where the CNLSPs are stopped, in

addition to the energy of the decay products. Another possibility, which requires minimal

experimental modification, is to study the CNLSP which are stopped in the main detector

or surrounding rock [4].

As pointed out in ref. [5], the study of the CNLSP decays can probe the underlying

supergravity in nature. With the gravitino mass inferred from the kinematics, the addi-

tional CNLSP lifetime measurement will test an unequivocal prediction of supergravity.

Moreover, the study of a rare 3-body decay τ̃ → τγG̃ can reveal the peculiar couplings of

the gravitino and the gravitino spin 3/2.

In this paper, we consider the physics of the CNLSP τ̃ decays that can be done with

the heavy material stopper-detector [2], because only a detector of this type can cover a

wide range of lifetime O(10nsec) < τCNLSP < O(10 years). We find that the mass of the

gravitino can be measured if it is sufficiently heavy (roughly mG̃ > 0.2mτ̃ ). In that case,

one can check if the lifetime is consistent with the supergravity interpretation.

As we shall see, the LSP mass resolution is however poor if mG̃
<
∼ 0.2mτ̃ . In that

case, it is very hard to prove that the decay τ̃ → τ plus an invisible particle X is indeed

caused by the supergravity interaction involving G̃. We should note that, because of the

extremely weak coupling of the gravitino, if there is any unknown supersymmetric particle

X which couples rather weakly to the MSSM particles, the lightest MSSM particle may

decay into X instead of G̃ even if the G̃ is the LSP. For example, the superpartner of the

axion, the axino ã, can be such a particle. However, we found that it may be possible to

discriminate the case of X = G̃ and the case of X = ã, by investigating the three body

decay τ̃ → τγX as suggested in [5, 6], with enough statistics.

This paper is organized as follows. In section 2, we discuss a possible detector setup.

We found an O(1) kton detector (up to 8 kton) may be placed next to the CMS detector
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diameter weight of the detector length

ATLAS 22m 7Kt 44m

CMS 15m 12.5Kt 21m

without serious modification of the CMS experiment itself, but with non-negligible mod-

ifications to the CMS cavern side walls. In section 3, we select several model points and

estimate the expected number of the stopped particles for
∫
L = 300 fb−1 and 3000 fb−1.

In section 4, we discuss the measurement of the two body decay τ̃ → τX. The three

body decay of the CNLSP is studied in section 5. Section 6 contains the discussion and

comments.

2. Assumptions on the stoppers

In this section, we discuss the possibility to install massive stoppers next to the LHC

detectors, CMS and ATLAS. It turns out that the CMS cavern may allow for an easier

installation and more room for a massive stopper, compared to the ATLAS cavern. The

parameters of the two detectors are listed in table 2. The diameter of the CMS detector

is smaller, therefore the massive stopper can be placed closer to the interaction point at

CMS. The weight of the CMS detector is about twice as large as that of ATLAS. Because

of the large weight, the cavern of CMS is designed so that it can sustain a massive object

safely, which includes a reinforced floor to spread the detector pressure more equally. A

potential massive stopper with a weight of around a few kton can be placed on both sides

of the CMS detector, but it will need a reorganization of the scaffolding and gallery paths

on the cavern walls, to make room for such an additional detector.

The assembly and construction of the two detectors is also very different. Most of

the CMS detector components are assembled on the ground, and about 15 large detector

units will be lowered in the cavern for final assembly works. Hence the installation is less

integrated with the cavern, leaving relatively more freedom and thus changes needed in the

cavern to install massive stoppers are somewhat simpler [7]. On the other hand ATLAS

detector is assembled mostly in its cavern. The huge magnets toroids and outside muon

system fill up the cavern. The cryogenic system in the ATLAS cavern is also taking space

outside the detector [8].

We assume two stoppers with the size 3.5m × 15m × 15m and the average density

ρstop = 5g/cm3, hence, the total weight of the detector is 8 kton. This is maximum possible

rectangular parallelepiped volume that can be placed in the cavern, with the given space

to the cavern wall and with its long edge being the same as that of the CMS barrel part

(see figure 1). The stoppers are thus placed 8.5 m away from the interaction point. We

also assume that stopping power of the CMS detector is equivalent to (2500/ sin θ) g/cm2

iron, where θ is angle between the CNLSP direction and the beam direction. The number

comes from the average density of CMS detector, 3.37g/cm3, which leads to the weight per

cm2 for the radial direction of 2500g/cm2.
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Figure 1: Left: a schematic figure of the CMS detector and two stoppers. The numbers are in

units of meters, and (0, 0, 0) is the collision point. Right: two stopper-detectors and a circle about

the size of CMS detector are superimposed on the cross section of CMS cavern UXC 55, drawing

taken from ref. [9].

As discussed in the previous paper [2], the stopper can be a hadronic and electromag-

netic calorimeter simultaneously, if the detector consists of layers of dense stopper and

tracking devices. The measurement of the energy of the decay product of the CNLSP is

the key ingredient to explore the CNLSP interactions to the X particle. In this paper we

assume that the CNLSP is the scalar tau lepton τ̃ , which decays mostly as τ̃ → τX where

X = G̃ or ã.

The τ decays into lν̄lντ , or into π± and π0’s. We do not consider the decays into µ,

because the muon energy cannot be measured unless the stopper contains a magnetic field.

The energy of the leptons are much softer than the parent τ energy anyway, so that they

are less useful for the study of the decay kinematics.

A large volume detector is advantageous to measure the energy of the τ decay prod-

ucts, because the detector must contain most of the energy of the showers from the τ

decay products. To fully absorb the hadronic cascade one needs sufficient thickness of the

calorimeter. The required thickness for an iron calorimeter (density is 7.87g/cm3) is listed

in ref. [10, 11], and is about 170 (120) cm for 100 GeV single hadron energy for 99% (95%)

containment respectively, equivalent to 1337.9g/cm2 (944.4g/cm2). To measure the energy

with sufficient accuracy by a stopper with ρ = 5g/cm3, the distance between the decay

position and the end of the detector along the shower path must be at least 190cm. A sim-

plified Monte Carlo simulation shows that 63% of the τ̃ decays satisfy this condition. High

energy photons and electrons initiate electromagnetic cascades, which are much easier to

contain in a detector. The energy deposition along the axis of the cascade is well described

by a gamma distribution, where the maximum occurs at ∼ 8X0, where X0 is the radiation

length. The energy deposition terminates around 15X0. (See figure27.17 of [10].) For the
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case of iron (X0 = 13.84g/cm2), 200g/cm2 thickness of the material is needed to stop the

electromagnetic cascade. The difference in the absorption length is used to discriminate

isolated photons from hadron, which would be useful to study τ̃ → τγX decay.

In a previous paper [2], we discussed the possibility to re-use of the existing 1 kton

detector, such as SOUDAN II [12] as the CNLSP stopper. The SOUDAN II consists of

the layers of O(m) long drift tubes and thin iron plates. The physics goal of this detector

is the search for proton decays. To be sensitive to the low energies involved in these decay

processes, the average density of SOUDAN II is low, less than 2g/cm3. The size of the

detector is probably enough to stop a certain amount of CNLSPs and measure the decay

rate, and therefore it may well be appropriate for the a first stage of the CNLSP study. On

the other hand, it is certainly not enough for a detailed energy measurement of the τ̃ decay

product. Most of the hadronic decay cascades are not fully contained for a detector with

the geometry allowed by the space in the CMS cavern. A high density detector consisting

of the layers of drift tubes/scintillators or RPCs to measure the charged particles between

iron plates thicker than SOUDAN II will be more optimized for the CNLSP study.

In this paper we assume a conservative energy resolution for hadronic showers, which

is around 150%/
√

E/GeV. The value is not unrealistic for a simple massive and affordable

detector, if a shower is sufficiently contained in the stopper. An additional complexity

may occur for showers which develop parallel to the layers of the tracking devices. If the

particles pass mostly through tracking devices, they feel a much lower average density,

while the particles going mostly through the iron plates do not give detectable signature

efficiently. We assume that the measured energy will be corrected depending on the shower

directions. A detector uniform to all directions would be better to measure the energy of

decay products of the stopped CNLSP. The calorimetery technologies studied for the ILC

may satisfy such conditions; see [13] for the CNLSP study at ILC.

3. Supersymmetric models with charged next lightest SUSY particles, and

expected number of stopped CNLSP

In this section, we briefly describe supersymmetric models with a long-lived charged next

lightest SUSY particle. We also select some model points, and estimate at each model

point the number of CNLSP that can be stopped at the stopper-detector.

In the minimal supergravity (mSUGRA) models, the scalar masses and gaugino masses,

trilinear couplings are universal at the GUT scale MGUT which are denoted by m0, M1/2,

and A0 respectively. The resulting mass spectrum is obtained by solving renormalization

group equations (RGE’s). When the RGE is integrated up to O(mZ), slepton soft masses

and gaugino masses are approximately given by the following convenient formulas

m2
q̃L

∼ m2
0 + 6.3M2

1/2, m2
ũR

' m2
d̃R

∼ m2
0 + 5.4M2

1/2,

m2
˜̀
L
∼ m2

0 + 0.5M2
1/2, m2

ẽR
∼ m2

0 + 0.15M2
1/2,

Mi

g2
i

=
M1/2

g2
X

,

(3.1)
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where gX is the gauge couplings at the unification scale.1 In this model, the mass of

gravitino mG̃ is order of m0 or M1/2, because both of them are proportional to the F0/Mpl

with O(1) coefficient, where F0 is the fundamental SUSY breaking scale. Depending on

the O(1) coefficients, the gravitino can be the lightest superparticle in general. Also in

the gaugino mediation models [14], the gravitino can be the LSP in a large domain of the

parameter space [15]. In this case the scalar masses are very small at the boundary, i.e.,

m0 ' 0, and the stau naturally becomes the NLSP.

In the gauge mediation (GM) model [16] the supersymmetry is broken at lower energy

scale, and the SUSY breaking in the hidden sector is mediated to the MSSM sector by

gauge interactions. The simplest GM model is described by 6 parameters: Λ = F/Mmes,

Mmes, N5, tan β, sgnµ = ±1 and gravitino mass. Here N5 is an effective number of vector-

like heavy quarks and leptons in SU(5) representations, Φ and Φ̄. (N5 = 1 for 5+ 5̄ quarks

and leptons, and N5 = 3 for 10 + 10.) A messenger field Y couples to the vector-like

fields as W = λY ΦΦ̄ and develops a vacuum expectation value λ〈Y 〉 = Mmes + θθF . The

gravitino mass is given by mG̃ = F0/(
√

3Mpl) where F0(≥ F ) is the total SUSY breaking

scale of the theory. We take mG̃ as a free parameter in this model.

The masses of MSSM particles at Mmes are obtained by relatively simple formula.

Gaugino masses satisfy the GUT relation, and

mg̃ =
αs

4π
N5Λ. (3.2)

Squark and slepton masses are given by

m2
q̃L

=

[
8

3

(αs

4π

)2
+

3

2

(α2

4π

)2
+

1

30

(α1

4π

)2
]

N5Λ
2,

m2
ũR

=

[
8

3

(αs

4π

)2
+

8

15

(α1

4π

)2
]

N5Λ
2,

m2
d̃R

=

[
8

3

(αs

4π

)2
+

2

15

(α1

4π

)2
]

N5Λ
2,

m2
˜̀
L

=

[
3

2

(α2

4π

)2
+

3

10

(α1

4π

)2
]

N5Λ
2,

m2
ẽR

=

[
6

5

(α1

4π

)2
]

N5Λ
2. (3.3)

All of the above models predict a large mass hierarchy between strongly interacting su-

perpartners and weakly interacting superpartners. Heavy gluino and squarks are copiously

produced at the LHC, and they decay into the light weakly interacting SUSY particles.

The lightest SUSY particle in the MSSM sector is either the lighter stau τ̃1 or the lightest

neutralino χ̃0
1.

The mass of the τ̃1 is the smaller eigenvalue of the mass matrix,

M2 =

(
m2

˜̀
L3

+ m2
τ − 1

2 (2m2
W − m2

Z) cos 2β −mτ (Aτ + µ tan β)

−mτ (Aτ + µ tan β) m2
τ̃R

+ m2
τ + (m2

W − m2
Z) cos 2β

)
. (3.4)

1The pole masses of strongly interacting SUSY particles receive a large corrections of O(30%) if the

mass scale is O(1TeV).
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Point ε ζ η

M1/2 440 1000 1000

m0 20 100 20

tan β 15 21.5 23.7

mg̃[GeV] 1025 2191 2190

mχ̃0
1
[GeV] 175 417 416

mτ̃1 [GeV] 154.2 343.5 324.3

σ(SUSY)[pb] 3.03 2.27 × 10−2 2.34 × 10−2

stopped in the stopper-detector per 105 events 255 250 254

stopped for 300 fb−1 4636 34 36

Table 1: Some model points in mSUGRA model from [4]. The mass spectrum and production

cross section relevant to our study are shown.

Λ[TeV] 40 50 60 70 80

mg̃[TeV] 0.93 1.13 1.34 1.54 1.74

mχ̃0
1
[GeV] 161.7 205.3 248.7 292.1 335.4

mτ̃1[GeV] 120.5 150.1 179.9 209.8 239.9

σ(SUSY)[pb] 5.24 1.68 0.64 0.28 0.13

stopped in the stopper-detector per 105 events 282 274 274 294 302

stopped for 300fb−1 8830 2762 1052 494 236

Table 2: Some model points in gauge mediation model. The production cross section and mass

spectrum relevant in this study are also shown.

Because of the off-diagonal elements of τ̃ mass matrix, τ̃1 could be significantly lighter than

the other sleptons. If the τ̃1 is the NLSP, the stopper-detector is useful to stop it and to

study its decay. We therefore consider the phenomenology when mg̃,mq̃ À mχ̃0
1

> mτ̃1 in

this paper. In the following, we omit the subscript of τ̃1 and denote the NLSP stau as τ̃ .

In most part of this paper, we will discuss the CNLSP physics as model independent

as possible. However, to give some numerical reference, we choose a few model points. For

mSUGRA models, we take the points proposed in [4]. The parameters are listed in table 1

and mass spectrum is given by the ISAJET ver. 7.69. In [4], the gravitino mass is taken

to be mG̃ = m0 in those model points.

For the gauge mediation model, we take the model points similar to that for the

study in [1]. Namely, we fix N5 = 3, tan β = 15 and Λ/Mmes = 0.5, where Λ =

40, 50, 60, 70, 80 TeV. The mass spectrum and production cross sections are summarized

in table 2. The gravitino mass for these models can be very small, whose minimum value

is given by O(Λ2)/Mpl. If the messenger sector couples a fraction of total SUSY breaking,

i.e. F < F0, the gravitino mass, which is proportional total SUSY breaking F0, can be

large.

The pattern of the mass spectra are similar for both mSUGRA and GM sample points.

The gaugino masses obey the GUT relation, and τ̃ mass is lighter than B̃ mass because of
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the CNLSP assumption. For mSUGRA, this implies m0 < M1/2, so that q̃ mass is about

as large as g̃, as it is so in GM models. The relation mq̃ ∼ mg̃ À mτ̃ is realized in our

model points.

To estimate the number of stopped CNLSP, the production cross section of the SUSY

particles and the velocity distribution of τ̃ at LHC must be evaluated. They depend on

the g̃ and q̃ masses, and the mass difference mg̃(q̃) −mτ̃ . We estimate the production cross

section and the decay distribution by using HERWIG [17], where the mass spectrum and

branching ratios are interfaced from ISAJET [18] to HERWIG by using ISAWIG [19]. We

generated 105 SUSY events for each model point.

The flying range R of the charged stable massive particle may be calculated by inte-

grating the energy loss equation of heavy ionizing particle (Bethe-Bloch equation). The

result is a function of β = p/E, with a linear dependence on the mass of the particle M . In

this paper, the stopping power of the stopper-detector is calculated using the data in [20].

See also the detailed discussion in ref. [3].

The maximum length of a particle track through the stopper-detector l(max), which

depends on CNLSP direction, is calculated assuming that the track of the CNLSP goes

straight from the production point. We regard the particle is stopped in the stopper-

detector if the flying range R satisfies:

2500 g/cm2

sin θ
< R <

2500 g/cm2

sin θ
+ l(max) × ρstop , (3.5)

where ρstop = 5g/cm3 is the density of the stopper-detector. The number of stopped

CNLSP in a stopper per 105 events, and the number of stopped CNLSP for L = 300fb−1 in

the two stoppers, are listed in table 1 and 2. In figure 2 we also show the simulated stopped

positions in a stopper-detector. The position distribution is uniform in the detector.

In figure 3, we show the βγ distribution of the CNLSPs for a few model points. We find

that CNLSP tends to be less relativistic when the SUSY scale is large, because momentum

of parent squarks and gluino is reduced. In figure 3, the peak position of the βγ is at

∼ 1.5(1.3) for Λ = 50(80) TeV. Because of that, the number of CNLSP in the smaller

βγ region is increased as the SUSY scale is increased. On the other hand, as mCNSLP

increases, CNLSPs with smaller βγ are stopped in the detector while the number of events

in the smaller βγ bins are kinetically suppressed. For instance, for Λ = 50 and 80 TeV,

CNLSPs in the bins between 0.5 < βγ < 0.6 and 0.45 < βγ < 0.55 are stopped in the

stopper-detector, respectively. Altogether, the number of stopped τ̃ for Λ = 40 to 80 TeV

for 105 SUSY events is roughly constant as we can see in table 2.

The production cross section reduces when the gluino mass is increased because the

parton distribution functions of gluon and quarks are quite small for x À 0.1. For 300fb−1,

the number of events stopped at the assumed two 4 kton stoppers ranges from 8000 events

to 30 events in the table. We will see in the next section that accumulation of O(100)

CNLSPs are enough to measure the lifetime with O(10)% accuracy. We will also estimate

the resolution of τ lepton energy Eτ arising from the decay τ̃ → τX through the end point

of the tau jet energy. Statistically O(1000) stopped CNLSPs are enough to measure the

end point with a few GeV error. In the upgrade of LHC (SLHC), integrated luminosity

– 8 –
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Figure 2: The simulated positions of the CNLSPs in a stopper-detector for the Λ = 40TeV

GM point. Here the z axis is the beam direction, and the y axis is the vertical direction. The

origin (0, 0, 0) is the interaction point and we assume the stopper-detector is at 8.5m< x <12m,

−7.5m< y <7.5m, and −7.5m< z <7.5m (cf. figure 1). The big square is the projection on the y-z

plane, the top rectangle is the projection on the x-z plane, and the right rectangle is the projection

on the x-y plane.

of 3000fb−1 is proposed, therefore the number of stopped events ranges from O(300) to

O(80000) for the model points presented in table 2.

4. Study of the τ̃ two body decay in stopper-detector

In this section we study the two body decay of the CNLSP in the stopper-detector. Both

in mSUGRA and GM models, the stau can be the CNLSP and decays into the gravitino

G̃ and the τ -lepton. The CNLSP decay width into a gravitino and a lepton is given by [5]

Γτ̃ (τ̃ → G̃τ) =
m5

τ̃

48πm2
G̃
M2

pl

(
1 −

m2
G̃

+ m2
τ

m2
τ̃

)4 [
1 −

4m2
G̃
m2

τ

(m2
τ̃ − m2

G̃
− m2

τ )
2

]3/2

.

= (68 days)−1
( mτ̃

100 GeV

)5
(

10 GeV

mG̃

)2

×
(

1 −
m2

G̃
+ m2

τ

m2
τ̃

)4 [
1 −

4m2
G̃
m2

τ

(m2
τ̃ − m2

G̃
− m2

τ )
2

]3/2

. (4.1)

We show the dependence of the stau lifetime on the gravitino mass in figure 4.

– 9 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
6

Figure 3: The βγ distribution of τ̃ for Λ = 80 TeV and Λ = 50TeV in GM models and for

point ζ in mSUGRA models for 105 SUSY events. Light (dark, gray) shaded histograms are the

number of stopped events in the stopper scaled by factor of 10, for point ζ and for GM models with

Λ = 80, 50TeV respectively.

Figure 4: The lifetime of the CNLSP τ̃ in the case of gravitino LSP, as a function of the gravitino

mass, for the stau mass 100, 200, and 400GeV (from top to bottom).

In general, the two-body decay τ̃ → Xτ can be triggered by a single tau jets initiating

from the position where τ̃ is stopped. The tau energy is monochromatic and expressed as

Eτ =
m2

τ̃ + m2
τ − m2

X

2mτ̃
. (4.2)

Here X is the invisible particle in the τ̃ decay, in this case X = G̃. If one can measure both

of the lifetime and the mass of the stau, the gravitino mass can be determined assuming
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Figure 5: Sensitivity of the reconstructed LSP mass mX [see eq. (4.3)] on the tau energy Eτ , for

mτ̃ = 100, 150, 200, 250, and 300GeV (solid lines). Dashed lines show contours of the lifetime in

the case of the gravitino LSP (X = G̃).

that eq. (4.1) is correct. Then the total SUSY breaking scale F0 =
√

3mG̃Mpl is also

determined, which is very important to understand the hidden sector physics.

The LHC main detectors can determine the mass of τ̃ through the stau velocity mea-

surement βτ̃ , e.g., in the muon system of the CMS detector. However, the measurement

of the lifetime may not be easy at the main detectors if the lifetime is too much longer

than the detector size. The cross section is typically O(1) pb or less, therefore we have

at most O(105) event at hand for L = 100 fb−1. Thus, only 10 events or less decay inside

the detector if cτ > 100 km. Some of the CNLSP are stopped in the main detector, but

measuring the decay precisely in the main detector would be challenging during the beam

time. On the other hand a stopper-detector [2] can measure the position and the time

where a CNLSP is stopped, and its decays without dead-time. The lifetime measurement

will be discussed in section 4.1. See [4] also on the idea to measure the lifetime by triggering

muons from the decays of the CNLSP stopped in the surrounding rock.

To predict the CNLSP lifetime, one has to determine the gravitino mass independently.

This is possible through the extraction of Eτ from the energy distribution of the tau jet

from the CNLSP decay, because Eτ is a function of mτ̃ and mX , as can be seen in eq. (4.2).

mX is expressed as a function of Eτ as follows;

mX =
√

m2
τ̃ + m2

τ − 2mτ̃Eτ . (4.3)

Figure 5 shows the dependence of the reconstructed LSP mass eq. (4.3) on the tau energy

Eτ for several values of mτ̃ . As can be seen from the figure, it is crucial to measure the Eτ

as precise as possible, especially for small mX , in order to determine the mass mX . Hence,

the stopper-detector should offer a reliable measurement of Eτ . We will discuss the Eτ

measurement and the mX reconstruction in section 4.2 and section 4.3, respectively.
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One can study the supersymmetric version of gravity interaction by studying the con-

sistency between the observation and prediction of the decay rate. If the gravitino is the

LSP, the decay width is given by eq. (4.1). Now if one can independently determine the

gravitino mass by means of kinematics, as described above, eq. (4.1) can be used in the

other way round, which leads to the measurement of the ’supergravity Planck scale’ [5]

M2
pl(supergravity) =

m5
τ̃

48πm2
G̃
Γτ̃

(
1 −

m2
G̃

+ m2
τ

m2
τ̃

)4 [
1 −

4m2
G̃
m2

τ

(m2
τ̃ − m2

G̃
− m2

τ )
2

]3/2

. (4.4)

Comparison of the obtained Mpl(supergravity) with the Planck scale of the Einstein gravity

Mpl(gravity) = (8πG)−1/2 = 2.43534(18) × 1018 GeV [10] would be a crucial test of the

supergravity. Prospects of the “Planck scale” measurement will be discussed in section 4.4.

It should be noted that the undetectable particle X may not be the gravitino G̃.

Any particle which couples weakly to τ̃ can be particle X. If the decay width into Xτ

is larger than the decay width into G̃τ , i.e. Γ(τ̃ → τX) > Γ(τ̃ → τG̃),2 the CNLSP

lifetime may be different from the supergravity prediction obtained from measured mτ̃ and

tau jet energy distribution. Inconsistency between the measured and predicted lifetime

immediately means a discovery of a new sector that may not be accessible otherwise.

One of well motivated examples of such a non-SUGRA decay is τ̃ → ãτ where ã is the

axino, superpartner of the axion. The CNLSP τ̃ decay into axino is studied in ref. [6] for

hadronic, or KSVZ axion models [21]. In this paper we adopt the set-up in ref. [6] for the

axino interaction, which we briefly describe here.

In KSVZ axion model, the Peccei-Quinn (PQ) mechanism [22] is realized in an action

with new heavy quarks. When these heavy quarks are integrated out, anomalous terms

involving the axion and gauge bosons are generated at low energy effective action. When

the axion interaction is supersymmetrized, its fermionic superpartner, the axino ã, must

be introduced. The axino mass mã can range between the eV and GeV scale depending

on the model and SUSY breaking scheme [23], and we regard it as a free parameter in this

paper. The coupling of the axino to the bino and the photon/Z-boson at the scale below

the Peccei-Quinn scale fa is given by the Lagrangian

Lã = i
αCaY Y

16π cos θ2
W fa

¯̃aγ5[γµ, γν ]B̃(cos θW Fµν − sin θW Zµν). (4.5)

The action does not contain direct τ̃ τ ã coupling and also strongly suppressed by the

PQ scale 109GeV <
∼ fa

<
∼ 1011GeV. The two body decay τ̃ → ãτ is induced by the one loop

diagram shown in figure 6. The loop integral has a logarithmic divergence. This is because

the effective vertex (4.5) is applicable only if the momentum is smaller than the heavy

(s)quark masses, whereas the loop momentum exceeds that scale. In the full theory, one

calculates two-loop diagrams with the heavy (s)quarks, which leads to a finite result [24].

Here we regulate the logarithmic divergence with the cut-off ∼ fa [6, 25], and the effective

2This includes the trivial case where the decay into the gravitino is kinetically forbidden, Γ(τ̃ → τG̃) = 0,

i.e., mG̃ > mτ̃ > mX .
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Figure 6: Feynman diagrams for τ̃ → ãτ .

ãτ τ̃R coupling is parameterized as

L ' −ξCaY Y
3
√

2α2

8π2 cos4 θ4
W

mB̃

fa
log

fa

m
τ̃Rτ̄PLã + hc, (4.6)

Here, m ' mτ̃ ,B̃ ' O(100 GeV) and we take log(fa/m) = 20.7 hereafter. The parameter ξ

is an order one parameter to represent the uncertainty coming from the cut-off procedure

mentioned above. In this paper, we regard this as a free parameter. The two body decay

width is given as [6]

Γ(τ̃ → ãτ) =
9α4C2

aY Y

512π5 cos8 θW

m2
B̃

f2
a

(m2
τ̃ − m2

ã)
2

m3
τ̃

ξ2 log2

(
fa

m

)
(4.7)

= ξ2(25 sec)−1C2
aY Y

(
1 − m2

ã

m2
τ̃

)2 ( mτ̃

100GeV

)(
1011GeV

fa

)2 ( mB̃

100GeV

)2
.

4.1 Lifetime measurement

In this subsection, we estimate the statistical error in the CNLSP lifetime measured by

the stopper-detector. The analysis is model-independent and applicable to any long-lived

charged particle stopped in the stopper.

For each CNLSP stopped in the stopper-detector, the stopping time tstop and the

decaying time tdecay will be recorded. The lifetime is then measured by fitting the temporal

distribution of the decaying events N(t), where t = tdecay− tstop. Here, we use a maximum-

likelihood fitting and adopt the following procedure: First we define a time te such that

N(t < te) = (1 − e−1)Ntotal ' 0.632Ntotal and N(t > te) = e−1Ntotal ' 0.368Ntotal,

where Ntotal is total number of stopped event.3 (For large Ntotal, this te is already a good

estimator of the lifetime.) We then calculate the ln L distribution as a function of lifetime

τ :

ln L(τ) =
∑

i=bins

fP (ni ; νi(τ)) (4.8)

3More precisely, te is defined by te = (tj + tj+1)/2, where j < (1− e−1)Ntotal < j +1 and tj is the decay

time of the j-th event: t1 < t2 < · · · < tj < · · · < tNtotal
.
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Figure 7: An example of maximum-likelihood fit of the temporal distribution N(t) for Ntotal = 100.

In the left plot, the solid line is the generated events, and dashed line is the best fit.

where fP(n; ν) = νne−ν/n! is the Poisson distribution, ni is the number of events in the

i-th bin, and νi(τ) is the predicted average number of events in that bin:

νi(τ) = Ntotal

(
e−(i−1)∆t/τ − e−i∆t/τ

)
. (4.9)

Here, we take 1 bin = ∆t = te/5.

An example of the time distribution and the best fit curve for MC distribution are

shown in figure 7 for Ntotal = 100. The nσ confidence interval can be estimated by the

range 2∆ ln L = 2(ln Lmax − ln L) ≤ n2. Figure 7 shows that the error of the lifetime is

∆τ/τ = (10 − 15)% for Ntotal = 100. We have done the same analysis for Ntotal = 1000

and found ∆τ/τ = (3 − 4)%.

So far, we assumed that most of the stopped CNLSPs decay within the experimental

time scale. We now consider the case where the lifetime is longer. Suppose that one

observes Ntotal = 1000 stopped CNLSPs and only 10 events decaying within 1 year. In

such a case, the lifetime is estimated from the number of the decaying events. For instance,

95% interval of the mean ν of Poisson variable for n = 10 is ν = [5.4, 17.0] [10]. Using

ν = Ntotal(1− e−1 year/τ ), a 95% interval 58 < τ < 184 years is obtained. For much longer

lifetime or smaller Ntotal, only a lower bound of the lifetime is obtained.

We have assumed that the background is negligible. The background from cosmic

neutrino and hard neutrino produced from the main detector interaction point is small

(cf. [2]), however careful study on the accidental background is necessary when statistics

is low. This is beyond of the scope of this paper.

4.2 Measurement of the τ energy from distribution of the τ jet energies

In this subsection, we estimate the uncertainty of the tau energy determination. Then, in

section 4.3 we discuss the kinematical reconstruction of the LSP mass. Schematically, the

procedure is as follows:

Ejet distribution → Eτ → mX . (4.10)

– 14 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
6

Figure 8: Tau jet energy distributions for left-polarized (left) and right-polarized (right) tau

generated by TAUOLA. The primary tau energy is Eτ = 50, 70, 90GeV from left to right. The

dashed lines show the spectrum without energy resolution effect, and the solid lines show the

spectrum with detector energy resolution ∆Ejet/Ejet = 150%/
√

Ejet/GeV.

When τ̃ decays into τ and invisible particle X, the tau energy Eτ is monochromatic

(see eq. (4.2)). Eτ can be obtained by fitting the τ jet energy distribution :

dN

dEjet
(Ejet; Eτ ) where Ejet =

decay products∑

i 6= ν, µ

Ei . (4.11)

Among the decay products of the τ lepton we omit the neutrinos and muons. In order to

see the prospects of Eτ measurement with a finite number of events, we generate the events

from τ decay by using the TAUOLA [26], and we perform a maximum-likelihood fitting of

low statistics (“experimental”) event sets by high statistics (“theoretical”) distributions.

In practice, the observed jet energy distribution depends not only on the Eτ , but also

on the detector resolution ∆Ejet and the tau polarization Pτ :

dN

dEjet
(Ejet; Eτ , Pτ ,∆Ejet). (4.12)

To obtain theoretical predictions for dN/dEjet(Ejet; Eτ , Pτ ,∆Ejet), we have generated tau

decay events with high statistics run of TAUOLA for the parameter space Eτ = 30 —

125 GeV and −1 ≤ Pτ ≤ 1, while fixing ∆Ejet/Ejet = 150% /
√

Ejet/GeV.4 For each single

τ decay generated by TAUOLA, the jet energy Ejet is calculated, and then smeared by

a Gaussian fluctuation with a variance σ2 = (∆Ejet)
2. Fig 8 shows examples of the jet

energy distribution.

In order to see a realistic situation, we generate a small number of tau lepton decays

for a fixed parameter set of (Eτ , Pτ , ∆Ejet), and then fit the result by the “theoretical”

4We have generated 106 events for each of the parameter sets Eτ = 30, 31, 32,. . . 109, 125GeV and

Pτ = ±1 (i.e., 96×2 parameter sets ×106 events), and interpolated the distribution between those parameter

points.

– 15 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
6

Figure 9: An example of maximum-likelihood fit of low statistics events from tau decays. (a)

Energy distribution of tau jet events generated from 1000 decaying tau leptons for Eτ = 70GeV,

∆Ejet/Ejet = 150%/
√

Ejet/GeV and Pτ = +0.8 (solid histogram), and the best fit distribution

(dotted histogram). Only the bins between the vertical lines are used for the fit (see text). (b)

2∆ ln L = 2(lnLmax − lnL) projected onto the Eτ axis. (c) Contour plots of 2∆ lnL = 1, 4, 9

projected onto the (Pτ , Eτ ) plane.

distribution obtained above. Here and hereafter, we assume that the energy resolution will

be known in advance. Examples are shown in figure 9 and figure 10 for total number of

decaying tau leptons Nτ = 1000 and Nτ = 100, respectively. The energy of τ jets which

are not contained in the detector may not be measured precisely. The Nτ corresponds to

the number of well contained events. Some comments are in order here. (i) We take 1

bin = 10 GeV. (ii) For the maximum-likelihood fitting we take only the bins with number

of events ≥ 1, and the bins above the peak energy, which in the examples of figure 9(a)

and 10(a) correspond to the bins between the two vertical lines. (iii) We then calculate the

ln L distribution in the parameter space of (Eτ , Pτ ) as follows

ln L(Eτ , Pτ ) =
∑

i=bins

ln fP

(
N low

i ;Nhigh
i (Eτ , Pτ )

)
(4.13)

where fP(n; ν) = νne−ν/n! is the Poisson distribution, N low
i is the number of events in the

i-th bin for the low statistics run, and Nhigh
i (Eτ , Pτ ) is the predicted number of events in
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Figure 10: An example of maximum-likelihood fit of low statistics events from tau decays. The

same as figure 9 but with 100 decaying tau leptons.

the i-th bin as a function of the parameter set (Eτ , Pτ ), normalized by the total number of

decaying tau leptons. Here, we assume that the total number of stopped τ̃ is known, i.e.,

the total number of events is not taken as a free parameter for the fit.

The nσ confidence interval can be estimated by the range 2∆ ln L = 2(ln Lmax−lnL) ≤
n2 projected onto the Eτ axis [see figures 9(b) and 10(b)]. One can see that the primary

tau energy can be determined within an error of a few GeV. From figure 9(c) one can also

see that the polarization is hardly determined by the energy distribution analysis even with

Nτ = 1000. This is because the sensitivity to the polarization becomes very weak once the

finite detector resolution is taken into account (cf. figure 8).

To estimate the statistical error in Eτ measurement we have generated the event sets

with same statistics Nτ = 100 (1000) and repeat the fit on Eτ and Pτ to obtain the

best fit value of the Eτ , Ebest
τ . In figure 11, we show the distribution of Ebest

τ for Eτ =

50, 70, 90 GeV, Pτ = 1, and ∆Ejet/Ejet = 150%/
√

E/GeV. From the variances of these

distributions, we estimate the 1σ uncertainty of Eτ as

δEτ/Eτ = 61%/
√

Eτ/GeV for N = 100 , (4.14)

δEτ/Eτ = 15%/
√

Eτ/GeV for N = 1000 . (4.15)
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Figure 11: Distribution of Ebest
τ for Eτ = 50, 70 and 90GeV (from left to the right), for Nτ = 1000

(left) and Nτ = 100 (right).

4.3 Determination of the LSP mass

Now we can estimate the uncertainty of the LSP mass. In figure 12 we plot the range of

reconstructed LSP mass

m̂X =

√
m̂τ̃

2 + m2
τ − 2m̂τ̃ Êτ , (4.16)

where

Eτ − δEτ (Eτ ) ≤ Êτ ≤ Eτ + δEτ (Eτ ) (4.17)

and Eτ = (m2
τ̃ + m2

τ − m2
X)/2mτ̃ . Note that the reconstructed LSP mass depends on not

only Eτ but also the measured CNLSP mass m̂τ̃ . In figure 12 we show the range of LSP

mass for m̂τ̃ = mτ̃ (solid lines) and 0.99mτ̃ ≤ m̂τ̃ ≤ 1.01mτ̃ (dashed lines), the latter

corresponding to 1% uncertainty of the CNLSP mass. The stau mass determination from

time of flight was discussed in [1, 27, 4]. For CMS detector the mass resolution is estimated

as 10-20% in each event and less than 1% for ∼ 1000 events.

As can be seen in figure 12, the kinematical reconstruction of the LSP mass is possible

if mX is sufficiently large, mX
>
∼ 0.15mτ̃ for Nτ̃ = 1000 and mX

>
∼ 0.25mτ̃ for Nτ̃ = 100.

Otherwise one can get only an upper bound on the mass mX .

4.4 Measurement of the ”Planck scale”

Finally, if the LSP is the gravitino (X = G̃), the uncertainty of the reconstructed gravitino

mass m̂G̃ translates into an uncertainty of the supergravity Planck scale, which is obtained

by substituting m̂G̃ for mG̃ in eq. (4.4). To take into account the error of mτ̃ , we also

substitute m̂τ̃ for mτ̃ . Eq. (4.4) then becomes

M̂pl
2

=
1

3πΓτ̃

(
m̂τ̃ Êτ − m2

τ

)(
Êτ

2 − m2
τ

)3/2

m̂τ̃
2 + m2

τ − 2m̂τ̃ Êτ

, (4.18)
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Figure 12: Uncertainty of the reconstructed LSP mass, corresponding to the estimated 1σ uncer-

tainty of Eτ , for Nτ = 1000 and 100, and mτ̃ = 150, 200 and 300GeV. Solid lines represent the

case without an error of mτ̃ , and dashed lines include 1% uncertainty of mτ̃ . Vertical dotted lines

represent the stau lifetime of 1 month, 1 year, and 10 years in the case of gravitino LSP (X = G̃).

which is shown in figure 13 for m̂τ̃ = mτ̃ (solid lines) and 0.99mτ̃ ≤ m̂τ̃ ≤ 1.01mτ̃ (dashed

lines). Here we do not include the uncertainty of the lifetime measurement, which simply

affects the measured Planck scale as Mpl ∝ (1/Γτ̃ )1/2. Neglecting the τ -lepton mass,
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Figure 13: Uncertainty of the Planck scale measurement, corresponding to the estimated 1σ

uncertainty of Eτ , for Nτ = 1000 and 100, and mτ̃ = 150, 200, and 300GeV. Solid lines represent

the case without an error of mτ̃ measurement, and dashed lines include 1% uncertainty of mτ̃ .

Vertical dotted lines represent the stau lifetime of 1 month, 1 year, and 10 years.

eq. (4.18) is simplified as

M̂pl
2 ' 1

3πΓτ̃

Êτ
4

m̂τ̃ − 2Êτ

. (4.19)

As discussed in the previous section, the kinematical reconstruction of the gravitino

mass is possible only if mG̃ is sufficiently large, mG̃
>
∼ 0.15mτ̃ for Nτ̃ = 1000 and mG̃

>
∼
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0.25mτ̃ for Nτ̃ = 100. For smaller values of the gravitino mass, one can get only a lower

bound on the Planck scale Mpl.

One can see whether the determined ‘Planck scale’ is inconsistent with the Planck scale

of the Einstein gravity, Mpl = 2.4× 1018 GeV. In other words, one can test the assumption

of the decay τ̃ → τG̃ by comparing the observed lifetime with the predicted lifetime. For

example, if the NLSP dominantly decays into axino, the lifetime would be far shorter

compared with gravitino assumption for a fixed mass mX , leading to a smaller value of

fitted Mpl. Suppose for instance one measures mτ̃ = 150 GeV and mX = 30 GeV. When

X = ã, the lifetime becomes O(10 sec) for fa ' 1011 GeV and mB̃ ' mτ̃ [cf. eq. (4.8)].

If one uses eq. (4.18), a “Planck scale” M̂pl = O(1015 GeV) would be obtained, thereby

falsifying the gravitino assumption.

4.5 Model points and cosmological constraints

We now discuss mSUGRA model points discussed in section 3, together with cosmological

constraints. In the early universe, the τ̃ CNLSP has been in thermal equilibrium until its

decoupling, Td ∼ 0.04mτ̃ . If such a particle has a very long lifetime, as discussed in this

paper, its decay during or after the big-bang nucleosynthesis (BBN), TBBN ∼ 1 MeV, may

spoil the successful prediction of BBN [28, 29]. In the models with τ̃ NLSP and G̃ LSP,

this leads to severe constraints on the parameter space of (mτ̃ , mG̃), in particular to upper

bounds on the gravitino mass for a given stau mass [30, 31].

Furthermore, it has been recently pointed out that a heavy charged particle can form

a bound state with light elements during the BBN, which can lead to new effects and/or

severer constraints [32]. In this paper we do not discuss these effects because it is difficult

to evaluate the net effect quantitatively and it still awaits detailed analysis.

We should also mention that those BBN constraints may disappear if there is entropy

production between the stau decoupling (Td ∼ mτ̃/20) and the BBN (TBBN ∼ 1 MeV),

because the stau abundance is diluted before its decay [33].

Keeping in mind the possibilities of severer bounds and also a possible loophole, let

us discuss the cases of mτ̃ = 150 GeV and mτ̃ = 340 GeV, corresponding to the mSUGRA

model points ε and ζ. According to the latest analyses [31] including the effects of the

hadronic decay [29], the bounds on the gravitino are mG̃
<
∼ (20–80) GeV for mτ̃ ' 150 GeV

and mG̃
<
∼ (40–200) GeV for mτ̃ ' 340 GeV.5 The ranges of upper bounds correspond to

the uncertainties of various bounds from primordial light elements.

For mτ̃ = 150 GeV (model point ε), as can be seen in table 1, one could collect

more than 1000 staus for 300 fb−1. The bound mG̃
<
∼ (20–80) GeV then suggests that

the measurement of the gravitino mass and the “Planck scale” may become possible if

one assumes conservative BBN bounds and if the gravitino mass is sufficiently large (cf.

figures 12 and 13). For mτ̃ = 340 GeV (model point ζ), the measurement would become

easier if one could collect the same number of staus (cf. figures 12 and 13). However, from

table 1 we find that expected number of stopped CNLSP is around 30 for 300 fb−1. This

5These constraints were derived without using the bound on the 3He. If one adopts it, the constraints

become severer (cf. [29]).
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is because gluino mass is above 2 TeV for this point and production cross section is small.

One needs SLHC (
∫
L = 1000fb−1) to collect O(100) events.

In the case of axino LSP, the BBN bound is much weaker because the lifetime of the

CNLSP stau becomes much shorter [see eq. (4.8)]. Hence, the axino mass measurement is

plausible for sufficiently large mã/mτ̃ .

5. Light axino vs gravitino: the rare decay of the CNLSP

5.1 Low energy effective action of the axino and gravitino involving photon

When mG̃
<
∼ 0.2mτ̃ , it is difficult to determine the gravitino mass from τ energy measure-

ment at stopper-detector. Axino is a motivated candidate which couples weakly to the

MSSM particle with comparable strength to the gravitino. In this section we therefore

compare the decay τ̃ → ãτγ with the decay τ̃ → G̃τγ. For simplicity, we will assume the

NLSP is pure ‘right-handed’ stau, τ̃ = τ̃R throughout this section. Extension to the case

with mixing with τ̃L is straightforward, and the mixing angle dependence is expected to

be small.

The gravitino is a spin-3/2 particle. However, in the limit where mG̃ ¿ mτ̃ , the

effective interaction to MSSM particles would be reduced to that of spin 1/2 particle,

goldstino χ̃. The effective action relevant to the τ̃R decay is given as follows,

L =
m2

τ̃√
3mG̃Mpl

( ¯̃χτRτ̃∗
R + H.c.) +

−mB̃

4
√

6m3/2Mpl

¯̃χ[γµ, γν ]B̃(cos θW Fµν − sin θW Zµν). (5.1)

The action is similar to that of axino given in eqs. (4.5) and (4.6) except the coupling coeffi-

cients. The relative weight of the two terms in eq. (5.1) are fixed by the supergravity, while

for the axino the coefficient in eq. (4.6) is induced from eq. (4.5) by the radiative correc-

tions. Note that the term proportional to X[γµ, γν ]B̃Fµν is a non renormalizable coupling

of the photon to gravitino or axino and induces significantly different γ, τ distribution.

The axino three body decay τ̃ → γτ ã proceeds through the diagrams shown in figure 14,

where the hatched triangle express the effective vertex shown in eq. (4.6). On the other

hand, the relevant diagrams for the three body decay into goldstino τ̃ → γτχ̃, are given

in figure 15. The diagram corresponding to the top right of figure 14 does not exist for

the goldstino case. The difference of the actions and the relevant diagrams will appear as

the deviation of the decay distributions. In the appendix, we list the three body decay

differential width into gravitino/axino in the limit where the gravitino/axino mass can be

neglected compared to mτ̃ . The formula for the massive gravitino and axino are given in

ref. [6].

5.2 Numerical results

The three body decay τ̃ → τγX should be visible in the stopper-detector if it has an

ability to measure charged tracks, and also segmented into small units. The position where

τ̃ decays in the detector is the position where the charged track by the π+, µ and e from

τ is initiated. For hadronic tau decays, a π± is always in the decay products, sometimes
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Figure 14: Leading Feynman diagrams for τ̃ → τγã.

with photons coming from π0 decays. Photons are converted into electron after passing ∼
one radiation length X0. Therefore for the iron based detector with ρ = 5(2)g/cm3, the

photon shower starts 2.8(7)cm from the decay point. In summary, the three body decay

of τ̃ → τγX is identified as a charged track (which might be associated with collinear EM

showers) + an isolated hard EM shower pointing back to the point where charged track is

started. If the segmentation is not good enough, the efficiency to discriminate EM showers

from π± would be reduced.

As can be seen in the appendix, the three body decay amplitude can be written as a

function of the angle between photon and τ , θ, and Eγ . To be conservative we assume the

energy resolution for the isolated photon shower is ∆Eγ/Eγ = 100%/
√

Eγ/GeV and ignore

the angular resolution of the photon momentum. (In the following Eγ denotes the photon

energy after taking into account of this finite resolution effect.) Note that the shortest

length of the detector is 3.5 m, which corresponds to 1750g/cm2 for ρ = 5g/cm3. The EM

showers are likely contained in the stopper because we only need 200g/cm2 to fully absorb

them.

We need to require several cuts for the accepted events.

• Experimentally, the angle between τ and γ must be large enough to avoid the overlap

between τ decay products and prompt γ. We only use the events where cos θ < 0.866.

We do not lose sensitivity to the differece between the two decays τ̃ → τγã/G̃ by
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Figure 15: Feynman diagrams for τ̃ → τγG̃ in the goldstino limit.

cutting these events. In the collinear region, the amplitude is dominated by the

contributions from QED vertex, which is common for both of the decays.

• The three body decay amplitude suffers soft and collinear singularity. Because we only

adopt simple leading order calculation, we require Eγ > 10 GeV and Eτ > 10 GeV.

We define the ratio

R(X) = Γ(τ̃ → Xγτ)|after cut/Γ(τ̃ → Xτ) (5.2)

The dependence of R on the MSSM parameter is quite different between X = ã and X = G̃.

While τ̃ → ãτ is one loop process controlled by the parameter ξ, the three body decay

contains a tree level contribution which depends on non-renormalizable axino-B̃-gauge

coupling (top left of figure 14).

When ξ is small, the tree level contribution plays a dominant role in the three body

decay into axino. This can be seen in figure 16, where the ratio R(ã) is plotted as a

function of the mass difference mB̃ −mτ̃ . We also fix mX = 1 GeV but R(X) is insensitive

to mX . R(ã) is enhanced when the mass difference between mB̃ and mτ̃ is small relative

to the τ̃ mass. This is because the two body decay of axino is suppressed by m2
B̃

. The

branching ratio ranges from 8% to 0.5% for the model parameters given in the figure. On

the other hand, the branching ratio Br(τ̃ → τγG̃) is well below 1% for the parameter

given in figure 16. Br(τ̃ → τγG̃)/Br(τ̃ → τG̃) ∼ 0.56% (0.84%) for mτ̃ = 100(190) GeV

respectively.
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Figure 16: The ratio R(X) = Γ(τ̃ → Xγτ)/Γ(τ̃ → Xτ) as a function of mB̃ − mτ̃ . The solid,

dashed, dot-dashed, short-dashed curves correspond to the case where mτ̃ = 100, 130, 160, 190GeV

respectively. Lines which increase toward smaller mass difference corresponds to X = ã. The

X = G̃ lines do not show significant bino mass dependence.

When the three body decay branching ratio turns out be above 5%, 200 stopped τ̃ is

enough to see the 3 σ deviation from the gravitino assumption. We estimate the number

of events Nevent stopped in the detector, which is required to find 3σ deviation from the

gravitino scenario as follows;

Nevent
(Br(τ̃ → τγã) − Br(τ̃ → τγG̃))2

Br(τ̃ → τγã)
= 9. (5.3)

The Nevent as a function of mB̃−mτ̃ is given in figure 17. Each curve increases as mB̃−mτ̃

is increased up to the value where Br(τ̃ → τγã) coincides with Br(τ̃ → τγG̃). When

mB̃ −mτ̃ < 20 GeV, O(1000) ( O(10000) ) stopped τ̃ are enough to see the deviation from

the measurement of R for ξ = 0.5(1) respectively.

Not only the branching ratio, but also the decay distribution contain the information

of the invisible particle. The axino decay distribution can be enhanced at the region where

xγ = 2Eγ/mτ̃ is large and cos θ is small, namely hard photon and τ is back to back [6].

This occurs when ξ is small and relative importance of the direct axino-bino-gauge boson

coupling is enhanced.

In figure 18, left panel shows the Eγ distribution for different cos θ intervals. Here we

fix ξ = 1, mB̃ = 130 GeV, and mτ̃ = 100 GeV. The distribution has significantly hard

component for cos θ < 0 when compared with that of gravitino in the right panel. The

enhancement of back-to-back events is a signature of an axino, and clear τ and γ separation

is not required to distinguish them.

We now estimate the the number of CNLSP decays in the stopper to see the 3 σ

deviation between τ̃ → ãγτ and G̃γτ from the decay distribution. We define ∆χ2 like
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Figure 17: The statistics required to find the branching ratio R(ã) = Γ(τ̃ → τγã)/Γ(τ̃ → τã)

deviates more than 3 sigma from the prediction for R(G̃). The lines corresponds to different stau

mass as in figure 16.

Figure 18: The distribution of Eγ in some θ intervals for τ̃ → τγX decay. left panel: X = ã

(ξ = 1), right panel: X = G̃. mτ̃ = 100GeV, and mB̃ = 130GeV.

function from the differential decay width;

∆χ2
dist(mτ̃ ,mX ,mB̃ , ξ,∆Eγ ,∆θ) = Σi

(ni(ã) − n̄i(G̃))2

ni(ã)
. (5.4)

Here, ni(ã) is the number of event in a i-th bin for τ̃ → τγã when the number of stopped

τ̃ is Ngen = 105. ∆Eγ and ∆θ is the bin size in Eγ and θ. We divide the Eγ and θ into 8

bins and 3 bins respectively, for the range 0 < Eγ < mτ̃ and 0 < θ < π;

∆E = mτ̃/8, ∆θ = π/3. (5.5)

The photon energy resolution of the detector is assumed ∆Eγ/Eγ = 100%/
√

Eγ/GeV. We

apply the cut cos θ < 0.866, Eγ > 10 GeV and Eτ > 10 GeV. On the other hand, n̄i(G̃) is
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Figure 19: Statistics required to distinguish axino scenario from gravitino scenario. left for mG̃ =

mã = 1 GeV and right for mG̃ = mã = 30GeV

the number of event in a i-th bin for τ̃ → τγG̃ with mG̃ = mã normalized so that the total

number is same to that of axino three body decay. Namely, we do not use the information

for R(x) in our fit.

From ∆χ2
dist, we define Ndist(3σ), the number of stopped τ̃ required to see the 3σ

deviation between τ̃ → τγã and τ̃ → τγG̃ as follows,

Ndist(3σ) = Ngen/(∆χ2
dist/9). (5.6)

We show the Ndist(σ) as a function of mB̃ −mτ̃ in figure 19. The sensitivity is significantly

increased from the estimate using the branching ratio only. For mB̃ − mτ̃ = 40 GeV, the

deviation may be visible for O(1000) events for ξ = 0.5 (O(10000) events for ξ = 1).

Finally, we estimate sensitivity at our model points in section 3. For simplicity we

assume τ̃ = τ̃R. In general τ̃R is mixed with τ̃L. The mixing angle is defined as

τ̃1 = τ̃L cos θτ̃ + τ̃R sin θτ̃ . (5.7)

For model points discussed in table 2, the angle is sin θτ̃ ∼ 0.9. The effect of the mixing

angle in the axino decay is small because the amplitude of τL is suppressed by both by the

small cos2 θτ̃ factor and smaller hypercharge, and can be safely ignored.

In figure 20 the expected sensitivity at the stopper-detector is shown. Here, long-

dashed (long-short-dashed, dashed) line corresponds to the required statistics for ξ = 0.5

(0.75, 1) for different Λ, while the upper and lower solid lines correspond to the number of

stopped CNLSP for 300 fb−1 and 3000 fb−1. One can address the difference between axino

and gravitino for Λ ∼ 55(65)TeV or less for L = 3000 fb−1 and ξ = 1 (0.75). Note that

the expected reach in Λ is essentially determined by the SUSY production cross section,

as they decrease steeply with increasing Λ. We therefore show the gluino masses scale on

the top of the figure.
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Figure 20: Solid lines are the expected number of stopped events for 300(3000)fb−1 luminosity for

GM points with 40TeV < Λ < 80TeV. Dashed lines are number of required stopped events to see

3-σ deviation in the Eγ −cos θ distribution of τ̃ → τγã from those expected for the decay τ̃ → τγG̃.

6. Discussion

In this paper we investigate the physics of the long-lived charged next lightest SUSY particle

(CNLSP), which may be explored at a massive stopper-detector placed next to the CMS

detector at the LHC. We assume the CNLSP is the lighter scalar tau, τ̃ , which decay into

τX where X is a invisible particle. A natural candidate of the particle X is a gravitino

but we also consider the case where X is axino ã.

In this paper, we assume very large stopper-detector next to the CMS detector, with

total mass of 8 kton. The stopper must have a capability to measure the position where

the CNLSP stopped, and also the energy of the τ decay products. If the detector can

be highly segmented, it is also possible to identify the τ decay products separately. The

number of stopped NLSP ranges from O(104) to O(100) for gluino and squark with mass

below 2TeV. If the size of the detector should be smaller, the number of the events must

be scaled down linearly.

We estimate the statistical error for Eτ , which can be determined from the end point of

the tau jet energy. We assume that the energy resolution of the detector is 150%/
√

E/GeV.

δEτ /Eτ ' 60%/
√

Eτ/GeV (15%/
√

Eτ/GeV) can be achieved for the statistics of the order

of Nstopped = 100(1000). When LSP mass is above 0.2mτ̃ , one can constrain the gravitino

mass both from above and below. From the lifetime and gravitino mass measurement, the

supergravity Planck scale Mpl can be measured. If many CNLSP can be accumulated, one

can even study the three body decay of the CNLP τ̃ → τγX. When the dominant decay

mode of the τ̃ is τ̃ → ãτ , we may be able to see the deviation of the decay branching ratio

and the distribution from the X = G̃ case.

Finally we comment on the strategy to proceed this experiment. SUSY particles will
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be found in the early stage of the LHC experiment if SUSY scale is O(1 TeV). If LSP

is gravitino or axino and the NLSP is charged and long-lived, it would also be recognized

easily. The detector proposed in this paper may be placed after the existence of long-lived

CNLSP is observed, roughly at the same time to the high luminosity run of the LHC, or

the proposed super LHC run.

It should also be noted that, although we have concentrated on SUSY models with

gravitino (axino) LSP and stau NLSP, the stopper-detector proposed in this paper would

be useful if any kind of long-lived particle which is electrically charged and/or colored will

be found at the LHC. (See e.g., [34] for a recent review on (meta)-stable massive particles

at colliders.) Such particles will eventually decay because they cannot be completely stable

from cosmological considerations. Thus, the lifetime measurement and the study of the

decay products will become a primary physics goal in any case, and a stopper-detector can

play a crucial role for it.

LHC experiment has a great potential to explore new physics in TeV regions. It is

important to explore new possibilities that can be done with LHC. In this paper we have

proposed a large additional detector in the CMS cavern when the long-lived CNLSP is

found. This requires a significant modification of the CMS experiment. The reward is low

systematics study of the CNLSP decay which primarily serve for the study of the gravitino

sector. The determination of gravitino mass either from the lifetime or (independently)

from Eτ measurement would give us a direct information of the total SUSY breaking scale.

Together with high precision determination of the MSSM sector expected with the CNSLP

momentum information, the nature of the interaction of the MSSM sector and hidden

sector can be studied in detail. We hope this paper is useful for further, and more realistic

studies.
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A. The three body decay of stau

In this appendix we list the differential decay width of τ̃R decay into γτX where X is either

gravitino or axino in limit where mX ¿ mτ̃R
. Formulas in this appendix are obtained by

taking massless limits mG̃/mã → 0 of the formulas in ref. [6]. The τ̃R decay width to τγG̃

is given as follows;

d2Γ(τ̃R → τγG̃)

dxγd cos θ
=

mτ̃

512π3

xγ(1 − xγ)

[1 − (xγ/2)(1 − cos θ)]2

∑

spins

|M(τ̃R → τγG̃)|2 (A.1)

where ∑

spins

|M(τ̃R → τγG̃)|2 =
8πα

3

m2
τ̃

M2
plAG̃

F G̃
diff(xγ , cos θ,AB̃). (A.2)
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and

F G̃
diff =

1 + cos θ

1 − cos θ

[
−xγ +

2

x2
γ

+
1

1 − xγ

+1 +
4xγ − 2(1 − cos θ) − 4

2 − xγ(1 − cos θ)
+

4 − 4xγ

{2 − xγ(1 − cos θ)}2

]

+
1 − xγ

2 − xγ(1 − cos θ)

(
−4 + 2x − 4

xγ

)
+

4(1 − xγ)2

{2 − xγ(1 − cos θ)}2

+
1

{xγ(1 + cos θ) − 2AB̃ + AB̃xγ(1 − cos θ)}2
×

×
[
2A2

B̃
(1 − xγ)

{
x2

γ − 2xγ +
4

xγ
− (x2

γ − 2xγ − 2) cos θ

}

+AB̃(1 + cos θ)(4 − 3xγ + xγ cos θ)(x2
γ − xγ − 2)

−(1 + cos θ)2xγ(x2
γ − xγ − 2)

]
. (A.3)

Here

xγ = 2Eγ/mτ̃ , AB̃ = (mB̃/mτ̃ )
2, AG̃ = (mG̃/mτ̃ )

2, (A.4)

and θ is the angle between τ and γ.

For the case of massless axino, we find

d2Γ(τ̃R → τγã)

dxγd cos θ
=

mτ̃

512π3

xγ(1 − xγ)

[1 − (xγ/2)(1 − cos θ)]2

∑

spins

|M(τ̃R → τγã)|2, (A.5)

where

∑

spins

|M(τ̃R → τγã)|2 =
α3C2

ãY Y

π cos4 θW

m2
τ̃

f2
a

F ã
diff(xγ , cos θ,AB̃), (A.6)

F ã
diff(xγ , cos θ,AB̃) =

x2
γ(1 − xγ)(1 + cos θ){1 + cos θ + AB̃(1 − cos θ)}
{xγ(1 + cos θ) − 2AB̃ + AB̃xγ(1 − cos θ)}2

+A
AB̃(1 + cos θ)

xγ(1 + cos θ) − 2AB̃ + AB̃xγ(1 − cos θ)

+
1

4
A2 1 + cos θ

1 − cos θ
AB̃

(
1

1 − xγ
+

2

x2
γ

)
, (A.7)

A =
3α

π cos2 θW
ξ log

(
fa

m

)
. (A.8)
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